Site icon Master Organic Chemistry

Introduction to Cycloalkanes (1)

Hydrocarbons Can Form Rings: Two Consequences

In the first few weeks of an organic chemistry class, we’ve learned that:

Nothing particularly strange about that so far. How about this:

In this first post on this series on cycloalkanes, we’ll discuss two key consequences of the fact that carbon can form rings, and then move forward with further posts in that vein.

1. Each Ring Decreases The Hydrogen Count By Two

One of the first consequences of the fact that carbon can form rings can be found by comparing the condensed molecular formulae of linear alkanes with cyclic alkanes.

Notice how the formula of linear alkanes follows the pattern   H = 2n + 2  (where “n” is the number of carbons) whereas the formula for cycloalkanes follows the pattern H = 2n.

Just by forming a ring, the number of hydrogens decreases by two!

By the way, every successive ring decreases the hydrogen content by two – the bicyclic molecules below follow each follow the pattern #H = 2n –2.

And the tricyclic molecule follows the pattern #H = 2n –4 .

[Bonus Q – how many hydrogens would be in a tetracyclic molecule with 20 carbons (and no multiple bonds)? ]

Why does this matter? As you’ll see later, we’ll be able to use the fact that each ring decreases the hydrogen count of the molecule by 2 to help us deduce the structures of unknown compounds in some cases. It can be a small clue, but an important one nonetheless. [A look ahead – Degree of Unsaturation]

2. A Key Consequence: Small Rings Cannot Be Turned Inside-Out

There’s a second interesting observation with cycloalkanes that we’ll talk about in much greater detail next time, but is important to get out of the way because it’s often overlooked. See how there’s that empty space in the middle of a cycloalkane ring? Many everyday household objects – belts, elastics, wristbands – can be easily turned inside out. Can we do the same with cycloalkanes? What happens when we try to turn them inside out? 

 Because it’s much easier to show this rather than tell it, I made a quick video.

The bottom line is that cycloalkanes of less than 8 carbons cannot be turned inside out without breaking carbon-carbon bonds.  >99% of the rings that you’ll see in Org 1 / Org 2 will fall into this category.

This has far-ranging consequences that we’ll talk about in the next post in this series. 

Not strange either… right? Makes sense?

 Take a second and see if you can imagine some consequences of that simple fact. How might it affect any of those bullet points we made above? 

It’s very difficult to imagine situations that may arise if you haven’t at least seen a glimpse of them yourself.

I’m going to use this opportunity to make a gratuitous chess analogy. One important rule in chess is that if a pawn makes its way to the end of the board, it can be promoted to a piece of the players choice. 99% of the time, the best choice is a Queen, but there are (very rare) situations where it is optimal to promote to a different piece – a knight, for example (see below). [link]

black to play

Cool, huh? An example like this one flows logically from the rules of the game, but you can’t really imagine situations like this one until you have a lot of board time under your belt.

Similarly, there are consequences of the fact that carbon can form rings that are not yet readily apparent. We’re going to start by exploring two of them today in this first post of a new series on cycloalkanes.

Related Posts:

Exit mobile version